Three-dimensional structure of escherichia coli asparagine synthetase B: A short journey from substrate to product
نویسندگان
چکیده
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence of both glutamine and AMP. Each subunit of the dimeric protein folds into two distinct domains. The N-terminal region contains two layers of antiparallel beta-sheet with each layer containing six strands. Wedged between these layers of sheet is the active site responsible for the hydrolysis of glutamine. Key side chains employed for positioning the glutamine substrate within the binding pocket include Arg 49, Asn 74, Glu 76, and Asp 98. The C-terminal domain, responsible for the binding of both Mg(2+)ATP and aspartate, is dominated by a five-stranded parallel beta-sheet flanked on either side by alpha-helices. The AMP moiety is anchored to the protein via hydrogen bonds with O(gamma) of Ser 346 and the backbone carbonyl and amide groups of Val 272, Leu 232, and Gly 347. As observed for other amidotransferases, the two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic and nonpolar amino acid residues. Strikingly, the three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase.
منابع مشابه
Carbamoyl phosphate synthetase: a crooked path from substrates to products.
The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molec...
متن کاملInvestigation of the GTP-binding consensus sequences in Escherichia coli adenylosuccinate synthetase and the enzyme's reaction mechanism
8 INTRODUCTION 10 MATERIALS AND METHODS 11 RESULTS 14 DISCUSSION 18 REFERENCES 21 CHAPTER 11. REPLACEMENT OF Asp^^^ WITH Asn BY SITEDIRECTED MUTAGENESIS CHANGES THE SUBSTRATE SPECIFICITY OF ESCHERICHIA COLI ADENYLOSUCCINATE SYNTHETASE FROM GUANOSINE 5'-TRIPHOSPHATE TO XANTHOSINE 5'-TRIPHOSPHATE ABSTRACT 28 INTRODUCTION 29 EXPERIMENTAL PROCEDURES 31 RESULTS 32 DISCUSSION 3628 INTRODUCTION 29 EXP...
متن کاملDeterminants of L-aspartate and IMP recognition in Escherichia coli adenylosuccinate synthetase.
Adenylosuccinate synthetase governs the first committed step in the de novo synthesis of AMP. Mutations of conserved residues in the synthetase from Escherichia coli reveal significant roles for Val(273) and Thr(300) in the recognition of l-aspartate, even though these residues do not or cannot hydrogen bond with the substrate. The mutation of Thr(300) to alanine increases the K(m) for l-aspart...
متن کاملSubstrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa.
Pseudomonas aeruginosa PAO1 secretes a siderophore, pyoverdine(PAO), which contains a short peptide attached to a dihydroxyquinoline moiety. Synthesis of this peptide is thought to be catalyzed by nonribosomal peptide synthetases, one of which is encoded by the pvdD gene. The first module of pvdD was overexpressed in Escherichia coli, and the protein product was purified. L-Threonine, one of th...
متن کاملStructure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product.
Carbamoyl phosphate synthetase catalyzes the production of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of MgATP. As isolated from Escherichia coli, the enzyme has a total molecular weight of approximately 160K and consists of two polypeptide chains referred to as the large and small subunits. Here we describe the X-ray crystal structure of this enzyme determined to 2.8 A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 38 49 شماره
صفحات -
تاریخ انتشار 1999